

Tilting vs optimisation in the context of EU climate benchmarks

October 2025

AUTHORS

Andreas Schroeder

Head of Index Research and Design, EMEA

andreas.schroeder@lseg.com

Saul Austin

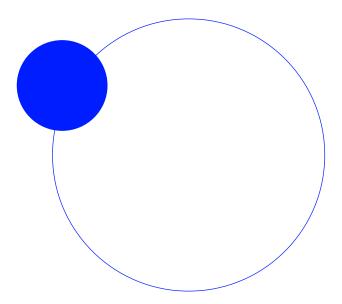
Analyst, Sustainable Index Research and Design saul.austin@lseg.com

Hannah Layman

Head of Sustainable Index Research and Design hannah.layman@lseg.com

Ely Klepfish

Manager, Index Research and Design ely.klepfish@lseg.com


Maylan Cheung

Senior Analyst, Index Research and Design maylan.cheung@lseg.com

Setting the stage: Why methodology matters

The way indices are built directly influences their performance, characteristics, and reliability. In this paper, we discuss the suitability of different index construction methodologies to meet the requirements of an EU Paris-Aligned Benchmark. In our research, we considered three different index construction methodologies: tilting, tracking error minimisation and turnover minimisation. We found that despite the relatively prescriptive requirements for a Paris-Aligned Benchmark, the index construction techniques yielded very different solutions, both in terms of technical characteristics (such as tracking error, concentration, turnover and liquidity); and qualitative outcomes (such as robustness and explainability).

Contents

The context: The EU climate benchmarks	4
Methodology choices	5
Outcomes	6
Index robustness	
Index transparency	8
Discover tailored solutions	10

The context: The EU climate benchmarks

The EU Climate Benchmarks are a regulatory framework introduced by the European Union. The framework which aims to align investment objectives with climate objectives by enforcing decarbonisation trajectories, exclusion criteria, and minimum standards for greenhouse gas (GHG) emission reductions. EU climate benchmarks are intended to support the transition to a low-carbon economy and to enhance transparency and comparability in climate-related investment strategies.

In our research, we focused on the FTSE Developed EU Paris-Aligned (PAB) index, a global equity index within the FTSE EU Climate Benchmarks Index Series. In this index series the weights of constituents vary to account for risks and opportunities associated with the transition to a low carbon economy. The FTSE Developed EU Paris-Aligned (PAB) index's methodology is aligned with the minimum standards for EU Low Carbon Benchmark Requirements and supports investors' decarbonisation and net zero strategies.

More detail about the FTSE Developed EU Paris-Aligned (PAB) Index can be found FTSE EU Climate Benchmarks Index Series.

More detail about the EU Low Carbon Benchmark Requirements can be found COMMISSION DELEGATED REGULATION (EU) 2020/1818.

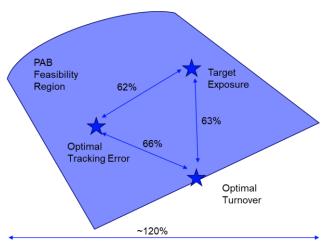
Figure 1: FTSE Paris-Aligned benchmark index design

Requirement	Index objective		
Exclusions	Standard exclusion list + I CP not aligned stocks		
Scope 1 and 2 emissions	50% reduction vs. benchmark and 7% YoY reduction		
Scope 3 emissions	> 50% reduction vs. benchmark and 7% YoY reduction		
TPI MQ	Uplift of 0.2 standard deviations vs. benchmark		
TPI CP	Fixed tilt 1 or Uplift of 0.2 standard deviations vs. benchmark		
Green revenue	Uplift of 100% vs. benchmark		
Fossil fuel reserve	50% reduction vs. benchmark		
High impact sector	Neutral		
Industry/country	± 5% vs. benchmark		
Capacity limit	20		
Max weight	5%		
Minimum weight	0.5bps		
Effective N	No less than 25% of the benchmark		

Source: Index Research and Design, FTSE Russell, October 2025.

Methodology choices

Target exposure¹ and optimisation are two well-established index construction methodologies. In brief:


- Target exposure starts with the market capitalisation weights and tilts them subsequently towards stocks with favourable characteristics to achieve the index objectives, subject to a set of constraints
- Optimisation involves defining a utility function (e.g. tracking error or turnover) and solving for the index weights that optimise this function while satisfying the same set of objectives and constraints

For our analysis, we constructed indices meeting the FTSE Developed PAB criteria using the following techniques:

- Target exposure
- Tracking error minimisation
- Turnover minimisation

Given the complexity of the EU Climate Benchmark requirements, one might expect the target exposure and optimisation index construction methods to produce similar outcomes. However, our analysis revealed a broad feasibility set; we observed up to a 120% difference in feasible index weights². Within this feasibility set, the target exposure and optimised approaches were about 60% away from each other, underscoring the variability introduced by different index construction techniques³.

Figure 2: Visual representation of the solution space

Source: Index Research and Design, FTSE Russell, October 2025.

¹ Tilt-based solution. More details in Target Exposure: Investment applications and solutions

² We obtain the feasibility region by randomly generating index weights and performing turnover minimisation solving for PAB constraints and minimising the turnover against the random index weights. The resulting index lies on the feasibility boundary. We repeat the process 1,000 times to get a good coverage of the feasibility region.

³ This is not mathematically unexpected, as the optimisation solves a problem approximately the same number of degrees of freedom as the number of constituents in the universe. By contrast, the Target Exposure is solving a form of the problem with orders of magnitude fewer degrees of freedom.

This means that the choice of index methodology will be driven as to which solution to target is less by the overall feasibility and more by auxiliary objectives, such as low tracking error, turnover, transparency or robustness. We will contrast these outcomes in the next sections.

Outcomes

Although they achieved the same targeted sustainability outcomes, the three indices did so in substantially different ways.

The target exposure methodology required the lowest amount of leverage⁴. While all three methodologies had a constraint on individual stocks capacity ratio (maximum leverage of 20x) to ensure that weights in smaller, less liquid stocks were not outsized; Tracking error optimisation and turnover optimisation indices reached the boundary of this constraint (with maximum leverage of 20x). Target exposure remained well within the constraint (with maximum leverage of 10x). This translated into higher liquidity in the target exposure index.

The benefits of optimised solutions are well documented in academic and financial practitioner literature; they enable the simultaneous achievement of multiple objectives by incorporating them as constraints within the optimisation process and provide the best possible trade off relative to the metric of interest.

As expected, the tracking error optimisation approach delivered the lowest tracking error (roughly half that of the target exposure). This approach also results in the most diversified portfolio, as measured by the effective number of stocks, due to its focus on an optimal distribution of risk.

The lowest turnover of 9% was achieved by the turnover optimisation. By comparison, target exposure has had three times higher turnover (albeit in larger, more liquid stocks based on the leverage figures), while the tracking error optimised solution had four times higher turnover.

Figure 3: Index statistics

Stats	Effective N % BM	Universe Coverage	Tracking Error	Max Leverage	Average Leverage	Turnover 2-way
Target Exposure	48%	54%	2.3%	10x	1.75x	27%
Tracking Error Optimisation	90%	40%	1.2%	20x	3.24x	40%
Turnover Optimisation	55%	49%	1.9%	20x	4.84x	9%

Source: Index Research and Design, FTSE Russell, October 2025.

⁴ Effective N % BM is the effective number of stocks expressed as percentage of the underlying benchmark's effective number of stocks. Effective number of stocks is the diversification measure expressed as equivalent number of equally weighted stocks. Universe Coverage – percent of the universe stocks with non-zero weights. Tracking Error is based on FTSE/Russell proprietary risk mode. Max and average leverage are the maximum and average ratios of index weights over benchmark weights. Turnover 2-way – is the average turnover of the index on the annual review dates.

Some of the less desirable characteristics of the index methodologies can be addressed through the introduction of additional constraints, such as limits on turnover, tracking error, the effective number of stocks or leverage. For example, by applying a turnover constraint to the tracking error optimised index, we were able to significantly reduce turnover at the expense of a marginally higher index concentration level. The solution also moved closer to the turnover optimised index, as measured by the sum of absolute weight differences.

Figure 4: Index statistics for tracking error optimisation variants

Stats	Effective N % BM	Universe coverage	Tracking error	Max leverage	Average leverage	Turnover 2-way
Original	90%	40%	1.2%	20x	3.24x	40%
+ 30% Max turnover	88%	40%	1.2%	20x	3.14x	28%
+ 20% Max turnover	85%	40%	1.2%	20x	3.18x	20%

Source: Index Research and Design, FTSE Russell, October 2025.

Similarly, by introducing a 10% marginal tracking error contribution constraint to the target exposure methodology, we saw a notable (approximately 25%) reduction in tracking error, and the solution moved half-way to that of the tracking error optimised index.

Index robustness

The comparison of the index outcomes would be incomplete if we did not include the robustness and explainability as part of the discussion.

In our recent publication Robust index design: The case for sensitivity-aware methodologies we introduced a practical test for assessing index robustness. The idea is simple: if small changes in input data lead to large shifts in index composition, the methodology may be overly sensitive (i.e. not robust).

To illustrate this, we focused on Scope 3 Emissions Intensity, a metric known to carry a relatively high (around 20%) margin of estimation error, as discussed in Scope for improvement. By introducing 20% random noise to the input data, we simulate a realistic variation in Scope 3 figures. We then rebuilt the indices using the "noisy" data and compared the resulting weights to those of the original index. Repeating this process 500 times allowed us to measure the sensitivity of each methodology to data uncertainty.

Our findings, shown in Figure 5, found that the target exposure index was notably more resilient to input noise than the tracking error optimisation index.

6%
5%
4%
2%
1%
Target Exposure
Methodology
Tracking Error Optimisation

Figure 5: Sensitivity of target exposure vs. tracking error optimisation to 20% noise on Scope 3 emissions intensity

Source: Index Research and Design, FTSE Russell, October 2025.

Tracking error optimisation is also highly sensitive to the choice of risk model. As shown in Figure 6, changing the covariance inputs, such as using daily rather than weekly data or varying the lookback window, can lead to portfolio weight differences of up to 33%, highlighting the extent of risk model dependency.

Figure 6: Differences between tracking error optimised indices constructed with different risk models

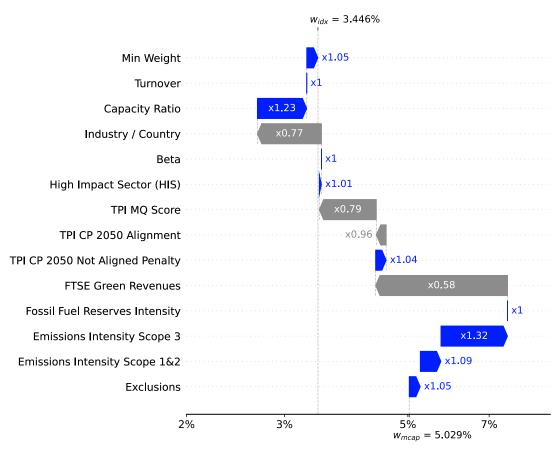
Risk Model	5 years, weekly	3 years, weekly	3 years, daily
5 years, weekly	0%	20%	32%
3 years, weekly	20%	0%	33%
3 years, daily	32%	33%	0%

Source: Index Research and Design, FTSE Russell, October 2025.

Overall, these sensitivities highlighted the relative robustness of the target exposure methodology over the tracking error optimisation version.

Index transparency

Another key consideration is the explainability of a constituent's weight in an index. While optimisation across any set of chosen parameters creates a black box for how the final weighting is determined, target exposure provides transparent weighting based on the scores and relative tilts assigned to each stock. If communication and interpretability of


relative stock positions is important, this will be a key driver in index construction decisions.

Waterfall charts serve as a powerful visual tool in this context, offering a clear representation of how various factors contribute to a stock's relative position within an index. By illustrating the cumulative effect of different drivers, they enable us to quickly assess the key elements influencing a stock's weight or inclusion in the index.

In Figure 7 we looked at Nvidia within the FTSE All-World Developed Paris-Aligned index as an example. It moved from a market capitalisation-based weight of just above 5% in the FTSE Developed index (as at the September 2025 review) to a final weight of 3.447%.

We work through the bars (from bottom to top) to understand the key drivers for this relative underweighting of the stock in the index. Nvidia benefitted from the redistribution of index weights from excluded companies, and it was rewarded for having relatively low greenhouse gas emissions compared to other constituents. However, it was penalised for having no green revenues, a lower Transition Pathway Initiative management quality ("TPI MQ Score"). It receives a negative tilt from the Industry/Country constraint as a result of the US Tech sector's overall overweight breaching the constraint limits. Finally, it gets a push from the Capacity constraints as the overweight in smaller stocks breaching the capacity limit is redistributed. Together, these adjustments led to an overall underweight position of Nvidia in the index (when compared with the capitalisation-weighted starting portfolio).

Figure 7: Weight explainer of Nvidia as of September 2025

Source: Index Research and Design, FTSE Russell, October 2025.

The level of transparency offered by the target exposure index approach therefore provides a crucial edge, offering clear insight into the detailed decisions and processes behind index construction. It empowers stakeholders to make more informed decisions and better assess how well the methodology delivers on its intended objectives.

Discover tailored solutions

Index construction methodology plays a critical role in shaping portfolio outcomes. While there are many potential approaches, each portfolio has unique design objectives that require tailored solutions.

At FTSE Russell, we support investors by providing:

- Insights into how methodology impacts traditional performance and risk metrics
- Analysis of methodology resilience and sensitivity under data volatility
- Tools for granular breakdowns to understand the effect of each objective

We work with clients to identify and implement index solutions aligned with their specific portfolio construction goals.

ABOUT FTSE RUSSELL

FTSE Russell is a leading global provider of index and benchmark solutions, spanning diverse asset classes and investment objectives. As a trusted investment partner we help investors make better-informed investment decisions, manage risk, and seize opportunities.

Market participants look to us for our expertise in developing and managing global index solutions across asset classes. Asset owners, asset managers, ETF providers and investment banks choose FTSE Russell solutions to benchmark their investment performance and create investment funds, ETFs, structured products, and index-based derivatives. Our clients use our solutions for asset allocation, investment strategy analysis and risk management, and value us for our robust governance process and operational integrity.

For over 40 years we have been at the forefront of driving change for the investor, always innovating to shape the next generation of benchmarks and investment solutions that open up new opportunities for the global investment community.

CONTACT US

To receive our research and insights email and Market Maps reports, directly to your inbox, subscribe here.

To learn more, visit learn more, visit learn-more, visit <a h

EMEA +44 (0) 20 7866 1810

Asia-Pacific

North America +1 877 503 6437

Hong Kong +852 2164 3333

Tokyo +81 3 6441 1430 **Sydney** +61 (0) 2 7228 5659

Disclaimer

© 2025 London Stock Exchange Group plc and its applicable group undertakings ("LSEG"). LSEG includes (1) FTSE International Limited ("FTSE"), (2) Frank Russell Company ("Russell"), (3) FTSE Global Debt Capital Markets Inc. "FTSE Canada", (4) FTSE Fixed Income LLC ("FTSE FI"), (5) FTSE (Beijing) Consulting Limited ("WOFE"). All rights reserved.

FTSE Russell® is a trading name of FTSE, Russell, FTSE Canada, FTSE FI, WOFE, and other LSEG entities providing LSEG Benchmark and Index services. "FTSE®", "Russell®", "FTSE Russell®", "FTSE4Good®", "ICB®", "Refinitiv", "Beyond Ratings®", "WMR™", "FR™" and all other trademarks and service marks used herein (whether registered or unregistered) are trademarks and/or service marks owned or licensed by the applicable member of LSEG or their respective licensors.

FTSE International Limited is authorised and regulated by the Financial Conduct Authority as a benchmark administrator.

All information is provided for information purposes only. All information and data contained in this publication is obtained by LSEG, from sources believed by it to be accurate and reliable. Because of the possibility of human and mechanical inaccuracy as well as other factors, however, such information and data is provided "as is" without warranty of any kind. No member of LSEG nor their respective directors, officers, employees, partners or licensors make any claim, prediction, warranty or representation whatsoever, expressly or impliedly, either as to the accuracy, timeliness, completeness, merchantability of any information or LSEG Products, or of results to be obtained from the use of LSEG products, including but not limited to indices, rates, data and analytics, or the fitness or suitability of the LSEG products for any particular purpose to which they might be put. The user of the information assumes the entire risk of any use it may make or permit to be made of the information.

No responsibility or liability can be accepted by any member of LSEG nor their respective directors, officers, employees, partners or licensors for (a) any loss or damage in whole or in part caused by, resulting from, or relating to any inaccuracy (negligent or otherwise) or other circumstance involved in procuring, collecting, compiling, interpreting, analysing, editing, transcribing, transmitting, communicating or delivering any such information or data or from use of this document or links to this document or (b) any direct, indirect, special, consequential or incidental damages whatsoever, even if any member of LSEG is advised in advance of the possibility of such damages, resulting from the use of, or inability to use, such information.

No member of LSEG nor their respective directors, officers, employees, partners or licensors provide investment advice and nothing in this document should be taken as constituting financial or investment advice. No member of LSEG nor their respective directors, officers, employees, partners or licensors make any representation regarding the advisability of investing in any asset or whether such investment creates any legal or compliance risks for the investor. A decision to invest in any such asset should not be made in reliance on any information herein. Indices and rates cannot be invested in directly. Inclusion of an asset in an index or rate is not a recommendation to buy, sell or hold that asset nor confirmation that any particular investor may lawfully buy, sell or hold the asset or an index or rate containing the asset. The general information contained in this publication should not be acted upon without obtaining specific legal, tax, and investment advice from a licensed professional.

Past performance is no guarantee of future results. Charts and graphs are provided for illustrative purposes only. Index and/or rate returns shown may not represent the results of the actual trading of investable assets. Certain returns shown may reflect back-tested performance. All performance presented prior to the index or rate inception date is back-tested performance. Back-tested performance is not actual performance, but is hypothetical. The back-test calculations are based on the same methodology that was in effect when the index or rate was officially launched. However, back-tested data may reflect the application of the index or rate methodology with the benefit of hindsight, and the historic calculations of an index or rate may change from month to month based on revisions to the underlying economic data used in the calculation of the index or rate.

This document may contain forward-looking assessments. These are based upon a number of assumptions concerning future conditions that ultimately may prove to be inaccurate. Such forward-looking assessments are subject to risks and uncertainties and may be affected by various factors that may cause actual results to differ materially. No member of LSEG nor their licensors assume any duty to and do not undertake to update forward-looking assessments.

No part of this information may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the applicable member of LSEG. Use and distribution of LSEG data requires a licence from LSEG and/or its licensors.

The information contained in this report should not be considered "research" as defined in recital 28 of the Commission Delegated Directive (EU) 2017/593 of 7 April 2016 supplementing Directive 2014/65/EU of the European Parliament and of the Council ("MiFID II") and is provided for no fee.

